Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 200: 116096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340372

RESUMO

Coastal sprawl is among the main drivers of global degradation of shallow marine ecosystems. Among artificial substrates, quarry rock can have faster recruitment of benthic organisms compared to traditional concrete, which is more versatile for construction. However, the factors driving these differences are poorly understood. In this context, this study was designed to compare the intertidal and subtidal benthic and epibenthic assemblages on concrete and artificial basalt boulders in six locations of Madeira Island (northeastern Atlantic, Portugal). To assess the size of the habitat, the shorelines in the study area were quantified using satellite images, resulting in >34 % of the south coast of Madeira being artificial. Benthic assemblages differed primarily between locations and secondarily substrates. Generally, assemblages differed between substrates in the subtidal, with lower biomass and abundance in concrete than basalt. We conclude that these differences are not related to chemical effects (e.g., heavy metals) but instead to a higher detachment rate of calcareous biocrusts from concrete, as surface abrasion is faster in concrete than basalt. Consequently, surface integrity emerges as a factor of ecological significance in coastal constructions. This study advances knowledge on the impact and ecology of artificial shorelines, providing a baseline for future research towards ecological criteria for coastal protection and management.


Assuntos
Ecossistema , Silicatos , Biomassa , Portugal
2.
Mar Pollut Bull ; 198: 115871, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086107

RESUMO

Non-indigenous species (NIS) spread from marinas to natural environments is influenced by niche availability, habitat suitability, and local biotic resistance. This study explores the effect of indigenous fish feeding behaviour on NIS proliferation using fouling communities, pre-grown on settlement plates, as two distinct, representative models: one from NIS-rich marinas and the other from areas outside marinas with fewer NIS. These plates were mounted on a Remote Video Foraging System (RVFS) near three marinas on Madeira Island. After 24-h, NIS abundance was reduced by 3.5 %. Canthigaster capistrata's preference for marinas plates suggests potential biotic resistance. However, Sparisoma cretense showed equal biting frequencies for both plate types. The cryptogenic ascidian Trididemnum cereum was the preferred target for the fish. Our study introduces a global framework using RVFS for in-situ experiments, replicable across divers contexts (e.g., feeding behaviour, biotic resistance), which can be complemented by metabarcoding and isotopic analysis to confirm consumption patterns.


Assuntos
Espécies Introduzidas , Tetraodontiformes , Animais , Ecossistema , Comportamento Alimentar , Portugal
3.
Mar Pollut Bull ; 187: 114522, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36623468

RESUMO

Marinas are hubs for non-indigenous species (NIS) and constitute the nodes of a network of highly modified water bodies (HMWB) connected by recreational maritime traffic. Floating structures, such as pontoons, are often the surfaces with higher NIS abundance inside marinas and lead the risk for NIS introduction, establishment and spread. However, there is still little information on how the location within the marina and the substratum type can influence the recruitment of fouling assemblages depending on water parameters and substratum chemical composition. In this study, fouling recruitment was studied using an experimental approach with three materials (basalt, concrete and HDPE plastic) in two sites (close and far to the entrance) in two marinas of Madeira Island (NE Atlantic, Portugal). The structure of benthic assemblages after 6- and 12-months colonization, as well as biotic abundance, NIS abundance, richness, diversity, assemblages' volume, biomass and assemblages' morphology were explored. Differences between marinas were the main source of variation for both 6- and 12-month assemblages, with both marinas having different species composition and biomass. The inner and outer sites of both marinas varied in terms of structure and heterogeneity of assemblages and heterogeneity of morphological traits, but assemblages did not differ among substrata. However, basalt had a higher species richness and diversity while concrete showed a higher bioreceptivity in terms of total biotic coverage than the rest of materials. Overall, differences between and within marinas could be related to their structural morphology. This study can be valuable for management of urban ecosystems, towards an increase in the environmental and ecological status of existing marinas and their HMWB and mitigation coastal ecosystems degradation.


Assuntos
Materiais de Construção , Ecossistema , Biomassa , Portugal , Incrustação Biológica , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...